

4131 SW 47th AVENUE SUITE 1408 **DAVIE, FL, 33314, US** (954) 368-7664

Kaycha Labs

710 POD - PERSY ROSIN 710 Labs SB36 #1 710 LABS SB36 #1 Matrix: Derivative Classification: High THC

Type: Extract for Inhalation Production Method: Other - Not Listed Harvest/Lot ID: 8564237364164920 Batch#: 3949465811966145 **Cultivation Facility: Homestead Processing Facility : Homestead** Source Facility: Homestead Seed to Sale#: 8564237364164920 Harvest Date: 02/24/25 Sample Size Received: 31 units Total Amount: 256 units Retail Product Size: 0.5 gram Retail Serving Size: 0.5 gram Servings: 1 Ordered: 02/25/25

Sampled: 02/25/25 Completed: 02/28/25

Sampling Method: SOP.T.20.010

Pages 1 of 6

PASSED

Certificate of	Analys	
COMPLIANCE FOR RETAIL	_	

Laboratory Sample ID: DA50225018-004

Feb 28, 2025 | The Flowery Samples From:

Homestead, FL, 33090, US

SAFETY RESILLES

SAFETY R	ESULTS										MISC.
R 0	ŧ	Нд	(Jan Barris and Barris	ç	0)0 0	Ä		(\bigcirc		Ô
Pestici PASS		avy Metals ASSED	Microbials PASSED	Mycoto PASS		Residuals Solvents PASSED	Filth PASSED		r Activity SSED	Moisture NOT TESTED	Terpenes TESTED
Ä	Cannab	oinoid									TESTED
	-	THC 390 THC/Container			30.	al CBD 226% CBD/Container	-		-)86	I Cannabinoids)
%	D9-тнс 77.152	тнса 4.833	CBD 0.151	CBDA 0.086	D8-ТНС ND	св д 2.103	CBGA 0.532	сви 0.037	тнсv 0.499	CBDV ND	свс 0.881
⁷⁰ mg/unit	385.76	24.17	0.76	0.43	ND	10.52	2.66	0.19	2.50	ND	4.41
LOD	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001
	%	%	%	%	%	%	%	%	%	%	%
Analyzed by: 3335, 1665, 585	, 1440			Weight: 0.1097g		Extraction date: 02/26/25 11:18:1	.1			Extracted by: 3335	
Analytical Batch Instrument Used	d: SOP.T.40.031, SOP.T.40, SOP						Batch Date : 02/26/25	09:12:06			
	25.R05; 010825.48 947.110; 04312111	; 021825.R02 ; 040724CH01; 000	00355309								

FLOWERY

Full Spectrum cannabinoid analysis utilizing High Performance Liquid Chromatography with UV detection in accordance with F.S. Rule 64ER20-39.

This Kaycha Labs Certification shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. The results relate only to the material or product analyzed. ND=Not Detected, ppm=Parts Per Million, ppb=Parts Per Billion, RSD=Relative Standard Deviation. Limit of Detection (LOD) and Limit Of Quantitation (LOQ) are terms used to describe the smallest concentration that can be detected and reliably measured by an analytical procedure, respectively. Action Levels are State determined thresholds based on F.S. Rule 64ER20-39 and F.S. Rule 5K-4. The Measurement of Uncertainty (MU) error is available from the lab upon request. The "Decision Rule" for pass/fail does not include the MU. Any calculated totals may contain rounding errors.

Vivian Celestino Lab Director

Signature 02/28/25

710 POD - PERSY ROSIN 710 Labs SB36 #1 710 LABS SB36 #1 Matrix : Derivative Type: Extract for Inhalation

PASSED

TESTED

4131 SW 47th AVENUE SUITE 1408 **DAVIE, FL, 33314, US** (954) 368-7664

Certificate of Analysis

The Flowery

Samples From: Homestead, FL, 33090, US Telephone: (321) 266-2467 Email: brian@theflowerv.co Sample : DA50225018-004 Harvest/Lot ID: 8564237364164920 Batch#: 3949465811966145 Sample Size Received: 31 units Sampled : 02/25/25

Total Amount : 256 units Ordered : 02/25/25 Completed : 02/28/25 Expires: 02/28/26 Sample Method : SOP.T.20.010

Page 2 of 6

Terpenes

erpenes	LOD (%)	mg/uni	t %	Result (%)		Terpenes		LOD (%)	mg/unit	%	Result (%)
DTAL TERPENES	0.007	31.14	6.228			SABINENE		0.007	ND	ND	
TA-MYRCENE	0.007	7.00	1.399			SABINENE HYDRATE		0.007	ND	ND	
TA-CARYOPHYLLENE	0.007	6.01	1.201			ALPHA-CEDRENE		0.005	ND	ND	
MONENE	0.007	5.49	1.097			ALPHA-PHELLANDRENE		0.007	ND	ND	
NALOOL	0.007	3.22	0.643			ALPHA-TERPINENE		0.007	ND	ND	
PHA-HUMULENE	0.007	2.97	0.593			ALPHA-TERPINOLENE		0.007	ND	ND	
JAIOL	0.007	1.95	0.390			CIS-NEROLIDOL		0.003	ND	ND	
PHA-BISABOLOL	0.007	1.38	0.275			GAMMA-TERPINENE		0.007	ND	ND	
LPHA-PINENE	0.007	0.79	0.158		1	Analyzed by:	Weight:		Extraction da	ite:	Extracted by:
LPHA-TERPINEOL	0.007	0.56	0.112			4451, 585, 1440	0.2382g		02/26/25 11:	06:45	4451
ENCHYL ALCOHOL	0.007	0.56	0.111			Analysis Method : SOP.T.30.061A.FL, SC	P.T.40.061A.FL				
RANS-NEROLIDOL	0.005	0.49	0.098			Analytical Batch : DA083758TER Instrument Used : DA-GCMS-008				Datah D	Date: 02/26/25 09:30:12
TA-PINENE	0.007	0.40	0.080		1	Analyzed Date : 02/27/25 09:49:37				Batch L	Jate: 02/20/25 09:50:12
AMPHENE	0.007	0.19	0.038			Pilution : 10					
ALENCENE	0.007	0.17	0.033			Reagent : 120224.07					
CARENE	0.007	ND	ND			Consumables : 947.110; 04312111; 224	0626; 000035530)9			
DRNEOL	0.013	ND	ND			Pipette : DA-065					
AMPHOR	0.007	ND	ND			Terpenoid testing is performed utilizing Gas of	_nromatograpny Ma	ss Spectroi	netry. For all i	lower samp	ples, the Total Terpenes % is dry-weight corrected.
RYOPHYLLENE OXIDE	0.007	ND	ND								
DROL	0.007	ND	ND								
ICALYPTOL	0.007	ND	ND								
ARNESENE	0.007	ND	ND								
NCHONE	0.007	ND	ND								
RANIOL	0.007	ND	ND								
ERANYL ACETATE	0.007	ND	ND								
EXAHYDROTHYMOL	0.007	ND	ND								
OBORNEOL	0.007	ND	ND								
OPULEGOL	0.007	ND	ND								
ROL	0.007	ND	ND								
	0.007	ND	ND								
CIMENE	0.007	ND									
CIMENE	0.007	ND	ND								

Total (%)

This Kaycha Labs Certification shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. The results relate only to the material or product analyzed. ND=Not Detected, ppm=Parts Per Million, ppb=Parts Per Billion, RSD=Relative Standard Deviation. Limit of Detection (LOD) and Limit Of Quantitation (LOQ) are terms used to describe the smallest concentration that can be detected and reliably measured by an analytical procedure, respectively. Action Levels are State determined thresholds based on F.S. Rule 64ER20-39 and F.S. Rule 5K-4. The Measurement of Uncertainty (MU) error is available from the lab upon request. The "Decision Rule" for pass/fail does not include the MU. Any calculated totals may contain rounding errors.

Vivian Celestino Lab Director

Signature 02/28/25

..... 710 POD - PERSY ROSIN 710 Labs SB36 #1 710 LABS SB36 #1 Matrix : Derivative Type: Extract for Inhalation

4131 SW 47th AVENUE SUITE 1408 **DAVIE, FL, 33314, US** (954) 368-7664

Certificate of Analysis

The Flowery

Samples From: Homestead, FL, 33090, US Telephone: (321) 266-2467 Email: brian@theflowery.co

Sample : DA50225018-004 Harvest/Lot ID: 8564237364164920

Sampled : 02/25/25 Ordered : 02/25/25

Batch#: 3949465811966145 Sample Size Received: 31 units Total Amount : 256 units Completed : 02/28/25 Expires: 02/28/26 Sample Method : SOP.T.20.010

Page 3 of 6

Pesticides

Pesticide	LOD	Units	Action Level	Pass/Fail	Result	Pesticide		LOD	Units	Action Level	Pass/Fail	Result
OTAL CONTAMINANT LOAD (PESTICIDES)	0.010	1.1.	5	PASS	ND	OXAMYL		0.010	ppm	0.5	PASS	ND
TOTAL DIMETHOMORPH	0.010	T. F.	0.2	PASS	ND	PACLOBUTRAZOL		0.010	ppm	0.1	PASS	ND
OTAL PERMETHRIN	0.010	ppm	0.1	PASS	ND	PHOSMET		0.010	maa	0.1	PASS	ND
FOTAL PYRETHRINS	0.010	1.1.	0.5	PASS	ND	PIPERONYL BUTOXIDE		0.010		3	PASS	ND
FOTAL SPINETORAM	0.010		0.2	PASS	ND	PRALLETHRIN		0.010		0.1	PASS	ND
TOTAL SPINOSAD	0.010		0.1	PASS	ND	PROPICONAZOLE		0.010		0.1	PASS	ND
ABAMECTIN B1A	0.010		0.1	PASS	ND						PASS	
ACEPHATE	0.010		0.1	PASS	ND	PROPOXUR		0.010		0.1		ND
ACEQUINOCYL	0.010		0.1	PASS	ND	PYRIDABEN		0.010		0.2	PASS	ND
ACETAMIPRID	0.010		0.1	PASS	ND	SPIROMESIFEN		0.010		0.1	PASS	ND
ALDICARB	0.010		0.1	PASS	ND	SPIROTETRAMAT		0.010	ppm	0.1	PASS	ND
AZOXYSTROBIN	0.010		0.1	PASS	ND	SPIROXAMINE		0.010	ppm	0.1	PASS	ND
BIFENAZATE	0.010		0.1	PASS	ND	TEBUCONAZOLE		0.010	ppm	0.1	PASS	ND
BIFENTHRIN	0.010		0.1	PASS	ND ND	THIACLOPRID		0.010	ppm	0.1	PASS	ND
BOSCALID	0.010		0.1	PASS	ND	THIAMETHOXAM		0.010	ppm	0.5	PASS	ND
CARBARYL	0.010 0.010		0.5	PASS	ND	TRIFLOXYSTROBIN		0.010	ppm	0.1	PASS	ND
CARBOFURAN CHLORANTRANILIPROLE	0.010		1	PASS	ND	PENTACHLORONITROBENZENE	(PCNB) *	0.010	ppm	0.15	PASS	ND
CHLORMEOUAT CHLORIDE	0.010		1	PASS	ND	PARATHION-METHYL *		0.010	maa	0.1	PASS	ND
CHLORPYRIFOS	0.010		0.1	PASS	ND	CAPTAN *		0.070		0.7	PASS	ND
CLOFENTEZINE	0.010		0.2	PASS	ND	CHLORDANE *		0.010		0.1	PASS	ND
COUMAPHOS	0.010		0.1	PASS	ND	CHLORFENAPYR *		0.010		0.1	PASS	ND
DAMINOZIDE	0.010		0.1	PASS	ND	CYFLUTHRIN *		0.050		0.5	PASS	ND
DIAZINON	0.010		0.1	PASS	ND	CYPERMETHRIN *		0.050		0.5	PASS	ND
DICHLORVOS	0.010		0.1	PASS	ND					0.5		
DIMETHOATE	0.010	ppm	0.1	PASS	ND	Analyzed by: 3621, 585, 1440	Weight: 0.2599a		ion date: 5 12:42:21		Extracted 450,585	by:
ETHOPROPHOS	0.010	ppm	0.1	PASS	ND	Analysis Method :SOP.T.30.102			5 12.42.21		430,363	
ETOFENPROX	0.010	ppm	0.1	PASS	ND	Analytical Batch : DA083762PES		2.1 L				
ETOXAZOLE	0.010	ppm	0.1	PASS	ND	Instrument Used : DA-LCMS-003			Batch	Date :02/26/	25 09:47:45	
FENHEXAMID	0.010	ppm	0.1	PASS	ND	Analyzed Date :02/27/25 09:47:	39					
FENOXYCARB	0.010	ppm	0.1	PASS	ND	Dilution : 250						
FENPYROXIMATE	0.010		0.1	PASS	ND	Reagent : 022525.R02; 081023. Consumables : 040724CH01; 22						
FIPRONIL	0.010	ppm	0.1	PASS	ND	Pipette : N/A	102100					
FLONICAMID	0.010		0.1	PASS	ND	Testing for agricultural agents is p	erformed utilizing	Liquid Chrom	hatography Tr	iple-Quadrupo	le Mass Spectron	netry in
FLUDIOXONIL	0.010		0.1	PASS	ND	accordance with F.S. Rule 64ER20						
HEXYTHIAZOX	0.010		0.1	PASS	ND	Analyzed by:	Weight:	Extractio			Extracted I	by:
IMAZALIL	0.010		0.1	PASS	ND	450, 585, 1440	0.2599g	02/26/25	12:42:21		450,585	
IMIDACLOPRID	0.010		0.4	PASS	ND	Analysis Method :SOP.T.30.151		51.FL				
KRESOXIM-METHYL	0.010		0.1	PASS	ND	Analytical Batch : DA083766V01 Instrument Used : DA-GCMS-002			Ratch Dr	ate:02/26/25	10.00.02	
MALATHION	0.010		0.2	PASS	ND	Analyzed Date :02/27/25 09:45:			Datell Da		10.00.02	
METALAXYL	0.010		0.1	PASS	ND	Dilution : 250						
METHIOCARB	0.010		0.1	PASS	ND	Reagent: 022525.R02; 081023.						
METHOMYL	0.010		0.1	PASS	ND	Consumables : 040724CH01; 22		501				
MEVINPHOS	0.010		0.1	PASS	ND	Pipette : DA-080; DA-146; DA-21		0 0				
MYCLOBUTANIL	0.010		0.25	PASS	ND ND	Testing for agricultural agents is p accordance with F.S. Rule 64ER20-		Gas Chromat	tography frip	ie-Quadrupole	Mass Spectrome	etry in
NALED	0.010	hhiii	0.20	r'A33	ND	accordance with r.b. Rule 04ER20						

This Kaycha Labs Certification shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. The results relate only to the material or product analyzed. ND=Not Detected, ppm=Parts Per Million, ppb=Parts Per Billion, RSD=Relative Standard Deviation. Limit of Detection (LOD) and Limit Of Quantitation (LOQ) are terms used to describe the smallest concentration that can be detected and reliably measured by an analytical procedure, respectively. Action Levels are State determined thresholds based on F.S. Rule 64ER20-39 and F.S. Rule 5K-4. The Measurement of Uncertainty (MU) error is available from the lab upon request. The "Decision Rule" for pass/fail does not include the MU. Any calculated totals may contain rounding errors

Vivian Celestino Lab Director

State License # CMTL-0002 ISO 17025 Accreditation # ISO/IEC 17025:2017 Accreditation PJLA-Testing 97164

Signature 02/28/25

PASSED

PASSED

710 POD - PERSY ROSIN 710 Labs SB36 #1 710 LABS SB36 #1 Matrix : Derivative Type: Extract for Inhalation

PASSED

PASSED

4131 SW 47th AVENUE SUITE 1408 **DAVIE, FL, 33314, US** (954) 368-7664

Certificate of Analysis

The Flowery

Samples From: Homestead, FL, 33090, US Telephone: (321) 266-2467 Email: brian@theflowerv.co Sample : DA50225018-004 Harvest/Lot ID: 8564237364164920 Sampled : 02/25/25 Ordered : 02/25/25

Batch#: 3949465811966145 Sample Size Received: 31 units Total Amount : 256 units Completed : 02/28/25 Expires: 02/28/26 Sample Method : SOP.T.20.010

Page 4 of 6

Residual Solvents

Solvents	LOD	Units	Action Level	Pass/Fail	Result
1,1-DICHLOROETHENE	0.800	ppm	8	PASS	ND
1,2-DICHLOROETHANE	0.200	ppm	2	PASS	ND
2-PROPANOL	50.000	ppm	500	PASS	ND
ACETONE	75.000	ppm	750	PASS	ND
CETONITRILE	6.000	ppm	60	PASS	ND
BENZENE	0.100	ppm	1	PASS	ND
BUTANES (N-BUTANE)	500.000	ppm	5000	PASS	ND
CHLOROFORM	0.200	ppm	2	PASS	ND
DICHLOROMETHANE	12.500	ppm	125	PASS	ND
THANOL	500.000	ppm	5000	PASS	ND
THYL ACETATE	40.000	ppm	400	PASS	ND
THYL ETHER	50.000	ppm	500	PASS	ND
THYLENE OXIDE	0.500	ppm	5	PASS	ND
IEPTANE	500.000	ppm	5000	PASS	ND
IETHANOL	25.000	ppm	250	PASS	ND
I-HEXANE	25.000	ppm	250	PASS	ND
PENTANES (N-PENTANE)	75.000	ppm	750	PASS	ND
PROPANE	500.000	ppm	5000	PASS	ND
TOLUENE	15.000	ppm	150	PASS	ND
TOTAL XYLENES	15.000	ppm	150	PASS	ND
RICHLOROETHYLENE	2.500	ppm	25	PASS	ND
analyzed by: 350, 585, 1440	Weight: 0.0206g	Extraction date: 02/27/25 11:29:55		E x 85	tracted by: 0
Analysis Method : SOP.T.40.041.FL Analytical Batch : DA083781SOL nstrument Used : DA-GCMS-003 Analyzed Date : 02/27/25 12:03:40			Batch Date : 02/26/25 1	6:08:45	

Reagent : 030420.09 Consumables : 430596: 319008 Pipette : DA-309 25 uL Syringe 35028

Residual solvents analysis is performed utilizing Gas Chromatography Mass Spectrometry in accordance with with F.S. Rule 64ER20-39.

This Kaycha Labs Certification shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. The results relate only to the material or product analyzed. ND=Not Detected, ppm=Parts Per Million, ppb=Parts Per Billion, RSD=Relative Standard Deviation. Limit of Detection (LOD) and Limit Of Quantitation (LOQ) are terms used to describe the smallest concentration that can be detected and reliably measured by an analytical procedure, respectively. Action Levels are State determined thresholds based on F.S. Rule 64ER20-39 and F.S. Rule 5K-4. The Measurement of Uncertainty (MU) error is available from the lab upon request. The "Decision Rule" for pass/fail does not include the MU. Any calculated totals may contain rounding errors

Vivian Celestino Lab Director

State License # CMTL-0002 ISO 17025 Accreditation # ISO/IEC 17025:2017 Accreditation PJLA-Testing 97164

Signature 02/28/25

710 POD - PERSY ROSIN 710 Labs SB36 #1 710 LABS SB36 #1 Matrix : Derivative Type: Extract for Inhalation

4131 SW 47th AVENUE SUITE 1408 **DAVIE, FL, 33314, US** (954) 368-7664

Certificate of Analysis

PASSED

The Flowery

Samples From: Homestead, FL, 33090, US Telephone: (321) 266-2467 Email: brian@theflowerv.co

Sample : DA50225018-004 Harvest/Lot ID: 8564237364164920

Sampled : 02/25/25 Ordered : 02/25/25

Batch#: 3949465811966145 Sample Size Received: 31 units Total Amount : 256 units Completed : 02/28/25 Expires: 02/28/26 Sample Method : SOP.T.20.010

Pag	Δ	5	of	6
ray	C	J	U	υ

ĊĘ.	Microbi	al			PAS	SED	သို့	M	ycotox	ins			PAS	SED
Analyte		LOD	Units	Result	Pass / Fail	Action Level	Analyte			LOD	Units	Result	Pass / Fail	Action Level
ASPERGILLUS	TERREUS			Not Present	PASS	Level	AFLATOXIN	B2		0.002	maa	ND	PASS	0.02
ASPERGILLUS				Not Present	PASS		AFLATOXIN			0.002	1.1.	ND	PASS	0.02
ASPERGILLUS				Not Present	PASS		OCHRATOXI			0.002		ND	PASS	0.02
ASPERGILLUS				Not Present	PASS		AFLATOXIN			0.002		ND	PASS	0.02
SALMONELLA	SPECIFIC GENE			Not Present	PASS		AFLATOXIN	G2			ppm	ND	PASS	0.02
ECOLI SHIGELI	LA			Not Present	PASS		Analyzed by:		Weight:	Extraction dat			Extracted	bu
TOTAL YEAST	AND MOLD	10	CFU/g	<10	PASS	100000	3621, 585, 14	10	0.2599g	02/26/25 12:4			450,585	by.
		996g	Extraction da 02/26/25 10: 58.FL, SOP.T.	08:18	Extracted 4520,453		Analysis Meth Analytical Bat Instrument Us Analyzed Date	ch:DA08 ed:N/A			1 Date : 0	2/26/25 0	9:59:13	
Dilution : 10	02/27/25 09:40:37 25.06; 013025.18; 0 580002042	21925.R61	l; 080724.14				Pipette : N/A Mycotoxins tes accordance with			ography with Triple	-Quadrupo	le Mass Spo	ectrometry	in
Analyzed by: 1531, 585, 1440	Weight: 0.996g		action date: 6/25 10:08:1		Extracted b 4520,4531	y:	Hg	Не	avy M	etals			PAS	SEC
Analytical Batch Instrument Used	: SOP.T.40.209.FL : DA083744TYM : Incubator (25*C)	DA- 328 [c	alibrated wit	h Batch Dat	te:02/26/2	5 08:44:5	Metal	ΓΔΜΙΝΔΝ	NT LOAD META	LOD	Units	Result	Pass / Fail PASS	Action Level
A-382]	02/28/25 12:47:29						ARSENIC	Armai	TI LOAD META	0.020	1.1.	ND	PASS	0.2
	02/20/23 12.47.29						CADMIUM			0.020	ppm	ND	PASS	0.2
eagent: 01302	25.06; 013025.18; 0	13025 R13	3				MERCURY			0.020		ND	PASS	0.2
onsumables : N		15025.1(15					LEAD			0.020		ND	PASS	0.5
	old testing is performe	ed utilizing N	1PN and traditi	onal culture base	d techniques	s in	Analyzed by: 1022, 585, 14	10	Weight: 0.2375g	Extraction dat 02/26/25 11:5			xtracted 022,4571	oy:
iccordance with F	.S. Rule 64ER20-39.						Analysis Meth Analytical Bat Instrument Us Analyzed Date	ch : DA08 ed : DA-I0	CPMS-004		h Date : ()2/26/25 1	.0:03:29	
							120324.07; 02	22425.R1		22425.R17; 0224 0193; 179436	25.R11; ()22425.R1	.5; 02242	5.R16;

Pipette : DA-061: DA-191: DA-216

Heavy Metals analysis is performed using Inductively Coupled Plasma Mass Spectrometry in accordance with F.S. Rule 64ER20-39.

This Kaycha Labs Certification shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. The results relate only to the material or product analyzed. ND=Not Detected, ppm=Parts Per Million, ppb=Parts Per Billion, RSD=Relative Standard Deviation. Limit of Detection (LOD) and Limit Of Quantitation (LOQ) are terms used to describe the smallest concentration that can be detected and reliably measured by an analytical procedure, respectively. Action Levels are State determined thresholds based on F.S. Rule 64ER20-39 and F.S. Rule 5K-4. The Measurement of Uncertainty (MU) error is available from the lab upon request. The "Decision Rule" for pass/fail does not include the MU. Any calculated totals may contain rounding errors

Vivian Celestino Lab Director

Signature 02/28/25

Page 6 of 6

710 POD - PERSY ROSIN 710 Labs SB36 #1 710 LABS SB36 #1 Matrix : Derivative Type: Extract for Inhalation

4131 SW 47th AVENUE SUITE 1408 **DAVIE, FL, 33314, US** (954) 368-7664

Certificate of Analysis

PASSED

The Flowery

Samples From: Homestead, FL, 33090, US Telephone: (321) 266-2467 Email: brian@theflowerv.co Sample : DA50225018-004 Harvest/Lot ID: 8564237364164920 Batch#: 3949465811966145 Sample Size Received: 31 units Sampled : 02/25/25 Ordered : 02/25/25

Total Amount : 256 units Completed : 02/28/25 Expires: 02/28/26 Sample Method : SOP.T.20.010

	Filth/Foi Material		n		PA	SSED		
Analyte Filth and Forei	gn Material	LOD 0.100	Units %	Result ND	P/F PASS	Action Leve		
Analyzed by: 1879, 585, 1440	Weight: 1g			tion date: Extracted by: /25 11:47:44 1879				
		ial Micro	oscope	Batch I	Date : 02/26	6/25 11:42:26		
Dilution : N/A Reagent : N/A Consumables : N/ Pipette : N/A	/A							
	aterial inspection is per cordance with F.S. Rule			spection utilizi	ing naked ey	e and microscope		
(\bigcirc)	Water A	ctiv	ity		PA	SSED		

Analyte Water Activity		LOD 0.010	Units aw	Result 0.508	P/F PASS	Action Level 0.85		
Analyzed by: 4797, 585, 1440		traction d /26/25 15		Extracted by: 4797				
Analysis Method : SOP.T.4(Analytical Batch : DA0837 Instrument Used : DA-028 Analyzed Date : 02/27/25 (76WAT Rotronic H	ygropalı	m	Batch Dat	te : 02/26/2	25 10:23:31		
Dilution : N/A Reagent : 101724.36 Consumables : PS-14 Pipette : N/A								

Water Activity is performed using a Rotronic HygroPalm HP 23-AW in accordance with F.S. Rule 64ER20-39.

This Kaycha Labs Certification shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. The results relate only to the material or product analyzed. ND=Not Detected, ppm=Parts Per Million, ppb=Parts Per Billion, RSD=Relative Standard Deviation. Limit of Detection (LOD) and Limit Of Quantitation (LOQ) are terms used to describe the smallest concentration that can be detected and reliably measured by an analytical procedure, respectively. Action Levels are State determined thresholds based on F.S. Rule 64ER20-39 and F.S. Rule 5K-4. The Measurement of Uncertainty (MU) error is available from the lab upon request. The "Decision Rule" for pass/fail does not include the MU. Any calculated totals may contain rounding errors.

Vivian Celestino Lab Director

Signature 02/28/25